Antimicrobial polyethylene with controlled copper release.

نویسندگان

  • Wei Zhang
  • Yihe Zhang
  • Junhui Ji
  • Qing Yan
  • Anping Huang
  • Paul K Chu
چکیده

Good antiinfection properties of medical polymers, especially those used in artificial organs, are crucial to the minimization of microbial attack in nosocomial treatments. However, medical polymers fabricated by conventional methods usually have unstable and short-lived antimicrobial effects because of unsteady out-diffusion of the antibacterial species from the organic matrix. Here, we introduce a dual plasma implantation process to enhance the properties. An inorganic antibacterial element, copper, is introduced into a medical polymer, polyethylene (PE), by means of copper plasma immersion ion implantation (PIII) and a subsequent nitrogen PIII process is used to regulate the release of the implanted Cu. X-ray photoelectron spectroscopy and transmission electron microscopy reveal that a relatively large amount of copper of about 11% is implanted into PE to a depth of several hundred nanometers. Chemical analyses confirm that the implanted Cu does not bond with the polymer matrix. However, the N(2) plasma treatment produces various functional bonds such as C=N, and C[triple bond]N which exert appreciable influence on regulating the out-diffusion rate of copper. The large amount of embedded Cu, coupled with controlled release of the element to the surface, gives rise to excellent and long-lasting surface antibacterial properties of the plasma-treated polymer. The capability of controlling the release and storing the antibacterial reagent in a buried layer leads to better antimicrobial polymeric materials for medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyethylene glycol-based hydrogels for controlled release of the antimicrobial subtilosin for prophylaxis of bacterial vaginosis.

Current treatment options for bacterial vaginosis (BV) have been shown to be inadequate at preventing recurrence and do not provide protection against associated infections, such as that with HIV. This study examines the feasibility of incorporating the antimicrobial peptide subtilosin within covalently cross-linked polyethylene glycol (PEG)-based hydrogels for vaginal administration. The PEG-b...

متن کامل

Antimicrobial Modified-Tragacanth Gum/Acrylic Acid Hydrogels for the Controlled Release of Quercetin

In this study, new antimicrobial hydrogels were prepared via reaction of functionalized-tragacanthgum (TG) biopolymer by quaternary ammonium functionalization of TG (QTG) with acrylic acid(AA). Characterization of the QTG hydrogels (QTG-AA) was carried out by FTIR,thermogravimetric analysis (TGA), and 1H NMR. Dynamic mechanical analysis, (DMA) wasconducted to characteriz...

متن کامل

Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene

BACKGROUND Antibacterial coatings of medical devices have been introduced as a promising approach to reduce the risk of infection. In this context, diamond-like carbon coated polyethylene (DLC-PE) can be enriched with bactericidal ions and gain antimicrobial potency. So far, influence of different deposition methods and ions on antimicrobial effects of DLC-PE is unclear. METHODS We quantitati...

متن کامل

Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu2+ Ions

Carmellose (CMC) is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2%) cross-linked by copper (II) ions (0.5, 1, 1.5, or 2.0 M CuCl₂) were used to prepare microspheres with antimicrobial activ...

متن کامل

Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

Antimicrobial copper nanoparticles (CuNPs) were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM), and X-ray Photoel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 2007